
Application Note

Анализ чугунов с использованием оптического эмиссионного спектрометра Shimadzu модели PDA-7000

Представлен анализ низко- и высоколегированных чугунов методом оптической эмиссионной спектрометрии. Чугуны классифицируются согласно их механическим свойствам. Такие свойства чугунов, как хорошая ковкость, твердость, износостойкость и т.д., объясняют их широкое применение. Во многих случаях специальные механические свойства не могут быть достигнуты без тщательного контроля химического состава чугуна. Добавление одного или более легирующих элементов модифицирует и оптимизирует свойства чугуна для конкретного применения.

Чугуны содержат более 2% углерода и называются в соответствии с их структурой следующим образом:

- Белые чугуны чугуны с цементитной структурой.
- Серые чугуны чугуны со слоистой структурой.
- Шаровидные чугуны чугуны с шаровидной структурой.
- Высоколегированные чугуны чугуны с аустенитной структурой.

Два основных фактора оказывают прямое влияние на структуру:

- 1. <u>Скорость охлаждения расплава металла</u> Быстрая скорость способствует образованию белой структуры, медленная скорость осаждению графита.
- 2. <u>Химический состав</u> Углерод, кремний, марганец, фосфор и сера наиболее важные в этом смысле легирующие элементы.
 - Кремний способствует осаждению графита
 - Марганец препятствует осаждению графита
 - Сера ухудшает механические свойства и способствует трещинообразованию
 - Фосфор увеличивает текучесть расплава. Фосфор нежелательный элемент при производстве чугуна с шаровидным графитом. Содержание фосфора выше 0.15% ухудшает прочность на разрыв и некоторые другие характеристики, поэтому концентрация фосфора удерживается на уровне ниже 0.08 %, а в случае материала с повышенной ударной вязкостью ниже 0.05%.

Чугуны классифицируют как нелегированные, когда содержание таких элементов, как Ni, Mo, Si, Cr, Mn и V ниже концентраций, приведенных в таблице:

 Никель 0.80 %
 Молибден 0.12 %
 Кремний 2.0 %

 Хром 0.60 %
 Марганец 1.50 %
 Ванадий 0.2 %

Другие легирующие элементы, как магний, медь, титан, алюминий, олово, ниобий, бор, вместе с сопутствующими элементами усиливают коррозионную устойчивость или улучшают механические свойства.

Шаровидный чугун

Добавление магния от 0.1 % до 0.15 % способствует образованию чугуна с шаровидной структурой. Около 50% этого количества выгорает во время процесса модифицирования.

Таким образом, во время плавки концентрация магния в расплаве продолжает снижаться. Настоятельно рекомендуется избегать во время этого процесса снижения концентрации магния до уровня 0.03 %. Содержание магния в 0.03% и менее в жидком металле препятствует образованию графита шаровидной структуры. Таким образом, для производства шаровидного чугуна необходим контроль содержания магния.

Высоколегированный чугун

Большие количества хрома или никеля обеспечивают стабильную аустенитную структуру. Углерод в высоколегированном чугуне может иметь в зависимости от химического состава слоистую или шаровидную структуру. Характерное применение легированного хромом белого чугуна – производство шаров, используемых для измельчения при добыче руд. "Никеле-стойкие сплавы" могут содержать до 36% никеля. Этот тип чугуна температурно- и коррозионноустойчивый и используется, например, как немагнитный материал в судостроении.

Несмотря на то, что чугуны используются за их физические свойства, необходимо также оценивать их химический состав. Наряду с результатами механических испытаний химический состав часто является важным фактором для определения пригодности материала для конкретной области применения. Искровая эмиссионная спектрометрия — наиболее популярный метод определения химического состава металлов, метод, обеспечивающий как быстрый, так и надежный анализ.

Аппаратура

Анализатор металлов PDA-7000 – высокоэффективный оптико-эмиссионный спектрометр с явным преимуществом одновременного многоэлементного определения. Спектрометр PDA-7000 CO встроенным продуваемым аргоном искровым штативом высокопроизводительным искровым источником был разработан для количественного анализа низко- и высоколегированных чугунов. Одновременный анализ до 32 элементов, включая микропримеси и газы выполняется за 11 секунд. Оборудованный спектрометром с фокусным расстоянием 600 мм, PDA-7000 имеет до 64 каналов. Анализ распределения импульсов (PDA) и спектроскопия с временным распределением (TRS) объединены в цикле измерения. Сочетание данных двух методов улучшает аналитическую точность при определении микроследов элементов, таких как Al, S, Pb, B, Ca, способных образовывать осадки в материалах. Улучшение точности, пределов обнаружения, воспроизводимости, возможность ввода больших образцов логично приводит к еще большей продуктивности метода.

Образцы и пробоподготовка

Для анализа плавки необходимо, чтобы малое количество расплава было взято из ванны с расплавленным металлом и вылито в медную изложницу. Медная изложница гарантирует высокую скорость охлаждения, необходимую для получения гомогенных образцов. Гомогенность образцов — основное требование для избежания ошибок во время анализа с помощью оптико-эмиссионного оборудования. Быстрое охлаждение в специальной форме препятствует образованию осадков и разделению фаз. Образец с белой кристаллической микроструктурой и хорошей гомогенностью (мелкозернистая и гомогенная кристаллическая структура) обеспечивает хорошую воспроизводимость и точность анализа.

Аргон

Чистота аргона: 99.999 % (рекомендуется)

Кислород: < 2 ppm

 H_2O : < 3 ppm (точка росы < -70°C)

Азот: < 10 ppm

Для определения азота, аргон должен содержать менее 3 ppm азота.

По желанию заказчика Shimadzu может поставить очистители аргона.

Аналитические данные / Точность

В следующей таблице приведены данные по точности при анализе чугунов. Данные определены с помощью соответствующих стандартных образцов. Эти образцы перекрывают диапазоны всех концентраций интересующих элементов в чугунах.

Элеме	Предел	диапазон	Содержание	Точность
НТ	обнаружения	концентраций	Оодержание	TOTHOUTE
	Оопаружения	заводских калибровок		
	ppm 3 sigma	%	%	±% 1 sigma
Al	2	0.001 0.5	0.005	0.00012
Ai	2	0.001 0.5	0.003	0.00012
			0.01	0.00017
As	4.5	0.0015 0.1	0.01	0.00011
AS	4.5	0.0013 0.1	0.05	0.00023
В	0.3	0.0002 0.1	0.001	0.00033
Ь	0.3	0.0002 0.1	0.001	0.0002
С	2.4	1.7 4.5	2.0	0.0001
	2.4	1.7 4.5	3.5	0.012
				0.021
0-	<1	0.0000 0.04	4.0	
Ca	<1	0.0003 0.01	0.001	0.00006
0-	4.5	0.000 0.4	0.01	0.0005
Ce	4.5	0.003 0.1	0.01	0.00045
0-	0.4	0.004	0.05	0.0017
Co	2.4	0.001 0.3	0.01	0.00014
			0.05	0.00038
		0.0045 00.0	0.1	0.00068
Cr	4.5	0.0015 36.0	0.01	0.0002
			0.05	0.0004
			0.5	0.0023
			1.0	0.003
			5.0	0.009
			10.0	0.017
			20.0	0.032
0	0.0	0.0005 40.0	30.0	0.047
Cu	0.9	0.0005 10.0	0.01	0.00009
			0.05	0.00033
			0.5 1.0	0.0027
				0.0052
			3.0	0.015
Ma	2.4	0.001 0.3	5.0	0.025
Mg	2.4	0.001 0.3	0.005	0.00023
			0.01 0.1	0.00038
N/m	1.5	0.001 6.0		0.003
Mn	1.5	0.001 6.0	0.01	0.00009
			0.05	0.00025
			0.5	0.0021
			1.0	0.004
			2.0	0.007
			5.0	0.016

Элеме нт	Предел обнаружения	Диапазон концентраций	Содержание	Точность
""	Оопаружения	заводских калибровок		
	ppm 3 sigma	%	%	±% 1 sigma
Мо	3	0.001 5.0	0.01	0.00017
			0.05	0.00045
			0.5	0.0025
			1.0	0.0045
			3.0	0.013
N	3	0.003 0.01	0.003	0.00022
			0.005	0.00023
			0.01	0.00025
Nb	2	0.0015 0.3	0.01	0.00022
			0.05	0.00082
			0.1	0.0016
Ni	4.5	0.001 40.0	0.01	0.0002
			0.05	0.00038
			0.5	0.0024
			1.0	0.004
			5.0	0.016
			10.0	0.03
			20.0	0.06
			30.0	0.09
Р	0.9	0.001 1.5	0.005	0.00008
			0.01	0.00012
			0.05	0.00048
			0.1	0.00093
Pb	2	0.002 0.1	0.01	0.00042
			0.05	0.0018
			0.1	0.0036
S	0.6	0.0006 0.2	0.005	0.00014
			0.01	0.00026
			0.05	00012
			0.1	0.024
Sb	9	0.0025 0.2	0.01	0.0005
			0.05	0.0013
			0.1	0.0023
Si	4	0.1 5.0	0.01	0.00018
			0.05	0.00036
			0.5	0.0024
			1.0	0.0046
			2.0	0.009
			3.0	0.014
Sn	2	0.001 0.5	0.01	0.00014
			0.05	0.00042
			0.1	0.00077

Элеме нт	Предел обнаружения	Диапазон концентраций заводских калибровок	Содержание	Точность
	ppm 3 sigma	%	%	±% 1 sigma
Ti	0.9	0.0002 0.35	0.01	0.00033
			0.05	0.0015
			0.1	0.002
V	1.8	0.001 0.5	0.01	0.00012
			0.05	0.00036
			0.1	0.00066
			0.5	0.003
W	9	0.003 0.2	0.01	0.00036
			0.05	0.0006
			0.1	0.0009
Zn	0.6	0.0015 0.1	0.005	0.00007
			0.01	0.00012
Zr	3	0.001 0.1	0.01	0.0003
			0.05	0.001
			0.1	0.002

Пределы обнаружения

Предел обнаружения определён как трехкратное стандартное отклонение (σ), рассчитанное из фона, в единицах ppm (частей на миллион). Приведённые значения справедливы для низко- и высоколегированных чугунов.

Точность

Точность определена как стандартное отклонение по 10 измерениям. Точность связана с распределением элементов в образцах.

Калибровка

Могут быть проведены заводские калибровки на низко- и высоколегированные чугуны. Заводские калибровки выполняются на сертифицированных стандартных образцах (ISO 9000), и обеспечивают высокую точность анализа. Заранее установленная заводская калибровка гарантирует пользователю немедленный ввод в эксплуатацию спектрометра для контроля качества продукции непосредственно сразу после инсталляции оборудования. Для более детальной информации обращайтесь, пожалуйста, в региональный офис Shimadzu или к дилеру.

